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Setting

2 — a bounded Lipschitz domain in R™
(N, g) — n-dim., complete Riemannian manifold embedded in RV
given a subspace X (Q, RY) of L (Q, RY) we denote

loc

X(OUN) ={uc X(Q,RY)s.t. u(z) c Nfora.e. x € N}

1-harmonic map flow — L2-gradient flow of constrained total variation
functional, given for u € C*(Q, ) by

TV (u / |V
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Setting — manifold domain

(M, ~) — compact Riemannian manifold
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Setting — manifold domain

(M, ~) — compact Riemannian manifold
given a subspace X (M,RY) of L} (M, RY) we denote

XM,N) ={ue X(M,R)s.t. u(x) € Nfora.e. z € M}
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Setting — manifold domain

(M, ~) — compact Riemannian manifold
given a subspace X (M,RY) of L} (M, RY) we denote

XM,N) ={uec X(M,RY)s.t. u(z) € N fora.e. z € M}

for u € C1(M, N) the total variation is now given by

1
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p-harmonic map flows

for p > 1, p-harmonic flow — L?-gradient flow of ;1) S IVuly

4 0f 30



p-harmonic map flows

for p > 1, p-harmonic flow — L2-gradient flow of ;1) S IVuly
formally given by equation (in normal coordinates on M)
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p-harmonic map flows

for p > 1, p-harmonic flow — L2-gradient flow of % S IVuly
formally given by equation (in normal coordinates on M)

uy = T (w)div(|Vul[P "2 Vu)
or equivalently
wy = div(|VuP72Vau) + Ay (u) (uyi, w,i) (PHMFE)

energy inequality

1 t 1
- Vup+//u2§—/ Yugl? El
P/M| g 0 M’ th p M’ o (ED
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Existence of harmonic map flows (p = 2)

M, N — compact, R — Riemann curvature tensor of N
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Existence of harmonic map flows (p = 2)

M, N — compact, R — Riemann curvature tensor of N

Theorem (Eells-Sampson, 1964)

Letp =2 andug € C°(M,N). If Rxr < 0, unique smooth harmonic
map flow u starting with uq exists for allt > 0. There exists a
sequence (t;) such that (u(t;)) converges uniformly to a harmonic
map ..
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Existence of harmonic map flows (p = 2)

M, N — compact, R — Riemann curvature tensor of N

Theorem (Eells-Sampson, 1964)

Letp =2 andug € C°(M,N). If Rxr < 0, unique smooth harmonic
map flow u starting with uq exists for allt > 0. There exists a
sequence (t;) such that (u(t;)) converges uniformly to a harmonic
map ..

Theorem (Chen-Struwe, 1988)

Letp = 2. For any ug € C>°(M,N) there exists a global weak
solution to (pHMFE) with initial datum wq satisfying (El). There exists
a sequence (t;) such that (u(t;)) converges weakly in W2(M, N')
to a weakly harmonic map w..
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p # 2, part |: Hungerbiihler

Theorem (Hungerbthler, 1997)

Letp = m, ug € WHP(M, N). There exists a global weak solution to
(PHMFE) with initial datum w satisfying (El). This solution is regular
except finitely many time instances. There is at most one solution
satisfying Vu € L*(]0, oo[xM).
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p # 2, part |: Hungerbiihler

Theorem (Hungerbthler, 1997)

Letp = m, ug € WHP(M, N). There exists a global weak solution to
(PHMFE) with initial datum w satisfying (El). This solution is regular
except finitely many time instances. There is at most one solution
satisfying Vu € L*(]0, oo[xM).

Theorem (Hungerbihler, 1996)

Let N be a homogeneous space and let ug € WHP(M, N'). There
exists a global weak solution to (b HMFE) with initial datum wg
satisfying (EI).
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p # 2, part 2: Fardoun & Regbaoui

Theorem (Fardoun-Regbaoui, 2002-2003)
Letug € C*T(M,N). If Ry <0 or [, |Vuly is small enough,
there exists a regular global weak solution to (pHMFE) with initial

datum wg. There exists a sequence (t;) such that (u(t;)) converges
uniformly to a p-harmonic map ..
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Motivation for 1-harmonic map flows

denoising of manifold-valued image/signal:
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Motivation for 1-harmonic map flows

denoising of manifold-valued image/signal:

) — a rectangle/interval/box

examples of \V:

o S? — color component of an image

e R? x S' — luminance-chromacity-hue space

e SO(3) or SE(3) — orientations of objects (e.g. camera
trajectories)

e SPD(3)— diffusion tensor space

8 of 30



The Euclidean case N/ = R = RY

TVa(u) :/ |[Vu| = sup{/ u - divp: ¢ € CL(Q), || < 1}
Q Q
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Q Q

T'Vo — convex, lower semicontinuous functional on L?(9)

9 of 30
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TVa(u) :/ |[Vu| = sup{/ u - divp: ¢ € CL(Q), || < 1}
Q Q

T'Vo — convex, lower semicontinuous functional on L?(9)

given ug € BV (Q2) there exists a global in time L2-gradient flow
(steepest descent curve) u satisfying for ¢ > 0

u, € =0TV (u)
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The Euclidean case N/ = R = RY

TVa(u) :/ |[Vu| = sup{/ u - divp: ¢ € CL(Q), || < 1}
Q Q

T'Vo — convex, lower semicontinuous functional on L?(9)

given ug € BV (Q2) there exists a global in time L2-gradient flow
(steepest descent curve) u satisfying for ¢ > 0

u, € =0TV (u)

u satisfies energy inequality
t
/qu(t,-)H—/ /ufg/ Vo
Q 0 Jo Q
foerofté0>0



The Euclidean case N/ = R = RY

Theorem (Andreu-Ballester-Caselles-Mazon, 2000)
u € H'(0,T;L?(Q)) N L>(0,T; BV(Q)) is a steepest descent curve
of TV, iff there exists Z € L>(]0, T[x) with divZ € L*(]0, T[x)
such that

u; =divZ a.e.infl,

(Vu, Z) =|Vu| as measureson(,
|1Z| <1 a.ein
Z - v¥=0 a.e ond
fora.e.t €]0,T

10 of 30
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Regular 1-harmonic map flow

formally

ur = mu(u)div 2, (+ T = o) (1HMFE)
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Regular 1-harmonic map flow

formally

ur = mu(u)div 2, (+ T = o) (1HMFE)

Definition
We say that u € WH2(]0, T[xQ, N') with Vu € L>(]0, T[x) is a
regular solution to (1HMFE) if there exists Z € L°°(]0, T'[x£2) such
that

=divZ,

ZeTuN, |Z|<1, Z—Wu'lfVu;éO a.e.in 0, T[xQ,
Z V=0 a.e.onl0,T[xdQ
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Existence of regular 1-harmonic map flow

Theorem (Giga-Kashima-Yamazaki, 2004)

Suppose that N is compact, 2 = T™, uy € C*+*(Q, N) and
|Vuol| e () is small enough for some p > 1. There exists a
local-in-time regular solution to (1HMFE) with initial datum ug
satisfying (El).
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Theorem (Giga-Kashima-Yamazaki, 2004)

Suppose that N is compact, 2 = T™, uy € C*+*(Q, N) and
|Vuol| e () is small enough for some p > 1. There exists a
local-in-time regular solution to (1HMFE) with initial datum ug
satisfying (El).

Theorem (Giacomelli--Moll, preprint 2017)

Suppose that N is a closed submanifold in RN and §) is a convex
domain in R™. Ifuy € WhH*°(Q, N), there exists a unique
local-in-time regular solution to (1HMFE) with initial datum wy
satisfying (El).
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Existence of regular 1-harmonic map flow

Theorem (Giga-Kashima-Yamazaki, 2004)

Suppose that N is compact, 2 = T™, uy € C*+*(Q, N) and
|Vuol| e () is small enough for some p > 1. There exists a
local-in-time regular solution to (1HMFE) with initial datum ug
satisfying (El).

Theorem (Giacomelli--Moll, preprint 2017)

Suppose that N is a closed submanifold in RN and §) is a convex
domain in R™. Ifuy € WhH*°(Q, N), there exists a unique
local-in-time regular solution to (1HMFE) with initial datum wy
satisfying (El).

If R < 0 or the image of the datum is small enough, the solution is
global and becomes constant in finite time.
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Sketch of proof

« approximation with gradient flow of [ (2 + |Vu/?)2
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Sketch of proof

« approximation with gradient flow of [ (2 + |Vu/?)2

* totally geodesic metric h on R for N/
o h restricted to AV coincides with g
o h coincides with the Euclidean metric outside a neighbourhood of A/

o there exists a neighbourhood U of A in RY and an involution i of U
that is isometric with respect to h
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Sketch of proof

e Bochner’s formula

——|Vu|2 = dlv(ux'b : Zm’b) - (WN(u)um’mJ) : Zi,xj

+Z;- RN('U') (ua:i7 uxj)ua:j
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Sketch of proof

e Bochner’s formula

——|Vu|2 = dlv(ux'b : Zml) - (T‘-N(u)um’mﬂ) : Zi,xj
+Z;- RN('U') (uati7 uxj)u:cj

e due to convexity of €2, from Bochner’s formula we get uniform

estimate

= a”quLw(Q) < C(N)HVUH%OO(Q)
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Sketch of proof

e Bochner’s formula
——|Vu|2 = dlv(uaﬂ : le) - (T‘-N(u)um’mﬂ) : Zi,xj

+Z;- RN('U') (uati7 uxj)u:cj

e due to convexity of €2, from Bochner’s formula we get uniform
estimate
p < p+1
pdt/ Vap < ) [ [vup
= a”quLw(Q) < CN)[[ Voo

e standard limit passage
14 of 30



Role of convexity

suppose Ry < 0 (e.g. N =RN)
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Role of convexity

suppose Ry < 0 (e.g. N =RN)
if 2 — convex, then

IVu(t,)llLe ) < [[Vuoll e
for Lipschitz (smooth) non-convex €2, is it still true that

ug € WHP(Q) = wu(t,-) € WHP(Q)?
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Role of convexity

suppose Ry < 0 (e.g. N =RN)
if 2 — convex, then

[Vu(t, ) e < [[VuollLr o)
for Lipschitz (smooth) non-convex €2, is it still true that
wg € WHP(Q) = uf(t,:) € WhHP(Q)?

for the gradient flow of [ |u,| + |u,| there is a non-convex polygon €2
and ug € W1>°(Q) such that u(t,-) & W, () for small ¢ > 0
(t-Moll-Mucha, 2017)

15 of 30
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Manifold domain

Theorem (Giacomelli-t-Moll, preprint 2017)

Suppose that N is a closed submanifold in R™ and M is a compact,

orientable Riemannian manifold. If ug € W (M, N), there exists a
unique local-in-time regular solution to (1HMFE) with initial datum wg

satisfying (El).
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Manifold domain

Theorem (Giacomelli-t-Moll, preprint 2017)

Suppose that N is a closed submanifold in R™ and M is a compact,
orientable Riemannian manifold. If ug € W (M, N), there exists a
unique local-in-time regular solution to (1HMFE) with initial datum wg
satisfying (El).

If Ry <0, the solution is global. If furthermore Ricyq > 0, the
solution converges uniformly to a 1-harmonic map.
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BV solutions (N - hyperoctant)

Theorem (Giacomelli-Mazon-Moll, 2013-2014)

Let N be a hyperoctant of S™ and uy € BV (Q,N). There exists a
solution to

u; = divZ + u9|Vu| as measures on (),

w Au=div(Z Au) a.e onfl,
|1Z| <1, ZeT,N aeonQ,
Z v¥'=0 a.e ond

in a.e.t €)0,T] for arbitrarily large T > 0.
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BV solutions (N - hyperoctant)

Theorem (Giacomelli-Mazon-Moll, 2013-2014)

Let N be a hyperoctant of S™ and uy € BV (Q,N). There exists a
solution to

u; = divZ + u9|Vu| as measures on (),

w Au=div(Z Au) a.e onfl,
|1Z| <1, ZeT,N aeonQ,
Z v¥'=0 a.e ond

in a.e.t €)0,T] for arbitrarily large T > 0.

there holds (Vu, Z) = |u*||Vu| as measures for a.e. t €]0,T'].
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m = 1 — localization of energy inequality

Q=1-=]0,1|
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m = 1 — localization of energy inequality

Q=1-=]0,1|

Theorem (Giacomelli-t, preprint 2018)
Letu € H'(0,00; L2(I)™) N L>(0, 00; BV (I)") be the steepest
descent curve of T'V; emanating from ug € BV (I)". There holds

|ua(t, )] < |uoql

as measures fort > 0.

18 of 30
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Sketch of proof

* approximate with gradient flow of [, (2 + |u,|2)z, mollify w
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* approximate with gradient flow of [, (2 + |u,|2)z, mollify w

e take smooth cutoff function ¢ supported in Br(z¢) with ¢ = 1in
B, (-TO)
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Sketch of proof

e approximate with gradient flow of [, (2 + qul2)%, mollify ug

e take smooth cutoff function ¢ supported in Br(z¢) with ¢ = 1in
By (o)

e forp > 1 calculate & [ ©?(? + |u,|?)

b
2
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Sketch of proof

* approximate with gradient flow of [, (2 + |u,|2)z, mollify w

take smooth cutoff function ¢ supported in Br(xg) with ¢ = 1in
Br ('TO)

for p > 1 calculate & [ (e + |ug|?)
estimate

b
2

1 1 =1 ¢
_/ (€% + ua(t,-)?)2 < ‘/ (2 +ud )% + -
p By (o) p Bgr(zo) ’ p—= 1R -

[SIS]

r
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Sketch of proof

approximate with gradient flow of [, (% + qul2)%, mollify ug
take smooth cutoff function ¢ supported in Br(xg) with ¢ = 1in
B,(z0)

for p > 1 calculate & [ (e + |ug|?)
estimate

b
2

1 1 =l
_/ (€% + ua(t,-)?)2 < _/ (£ +ud,)? + .
P J By (o) P JBg(zo) ’ p—1R-—r

pass to the limite — 0T, then p — 17, R — r, relax initial datum

[SIS]
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Completely local estimates

Theorem (Bonforte-Figalli, 2012)

Let u be a solution to the scalar total variaton flow with initial datum
up € BV(I). Then |uz|({zo}) < |uo+|({z0}) for any zo € J,,, and
oscau < oscaug on any interval A C I where ug is continuous.
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Let u be a solution to the scalar total variaton flow with initial datum
up € BV(I). Then |uz|({zo}) < |uo+|({z0}) for any zo € J,,, and
oscau < oscaug on any interval A C I where ug is continuous.

Theorem (Briani-Chambolle-Novaga-Orlandi, 2012)

Let Q be an open domain in R™ and let ug € L*(Q2, R™) be such that
div ug is a Radon measure on ). The L?-gradient flow of functional
o, |div u| satisfies (divu(t, )+ < (divug)+.
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Completely local estimates

Theorem (Bonforte-Figalli, 2012)

Let u be a solution to the scalar total variaton flow with initial datum
up € BV(I). Then |uz|({zo}) < |uo+|({z0}) for any zo € J,,, and
oscau < oscaug on any interval A C I where ug is continuous.

Theorem (Briani-Chambolle-Novaga-Orlandi, 2012)

Let Q be an open domain in R™ and let ug € L*(Q2, R™) be such that
div ug is a Radon measure on ). The L?-gradient flow of functional
o, divu| satisfies (divu(t, )+ < (divug)=.

non-increase of jumps for the scalar total variation flow
(Caselles-Jalalzai-Novaga, 2013)

for a solution u to the scalar TV flow with initial datum uy € BV (2),
does |Vou(t, )| < |Viugl|?
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A note about TV flow form = 1

take w € BV(I)", Z € WHH(I)" with |Z]| < 1 a.e.

210f 30
EEEEE————————————————————————



A note about TV flow form = 1

take w € BV(I)", Z € WHH(I)" with |Z]| < 1 a.e.
the condition (u,, Z) = |u,| is equivalent to
Z = |ZJ{| |luy| —a.e.in I

(a measure derivative)
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1-harmonic map flow for m =1

Definition

Suppose that w € W2(0,T; L?(I,N')) N L*>°(0,T; BV (I,N)) and
distg(u_, uy) < inj N on Jy,.

We say that u is a solution to (1HMFE) if there exists

Z € L*>(]0,T[xI)" such that a.e. in |0, T'| there holds

uy =7mn(u)Z, a.e.onl,
ZeTuN, |Z|<1 ae.onl,
Z:ﬁj—g |luy| —a.e.on I\ Jy,
Z =Tu ), Zt =T(u") onJ,,
Z- V=0 ondl
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1-harmonic flow for m = 1

Theorem (Giacomelli-t, in preparation)
Letwuy € BV (I, N) satisfy disty(ug , ug) < Ri 0n Jy, Ry = Ri(N).
For any T' > 0 there exists a solution to (1HMFE) starting with uy.
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Relaxed T'V

foru € BV (I,N), define
TVy(u) =

inf {liminf/\ug]z]: (uF) c Whe(I,N), uF = win BV(I,N)}
I
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Relaxed T'V

foru € BV (I,N), define
TVy(u) =

inf {liminf/\ug]z]: (uF) c Whe(I,N), uF = win BV(I,N)}
I

there holds
TV = [ sl

where
[wg |y = e | LT\ Jy + dist g(u_, uy YHOL Ty,
(Giaquinta-Mucci, 2006)
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Difficulties

e Z and u, not in complementary spaces
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e Z and u, not in complementary spaces

¢ in the expanded form
Uy = Zac +AN(Zauac)

the nonlinear term depends on Z (no sphere trick)
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Difficulties

e Z and u, not in complementary spaces

¢ in the expanded form
Uy = Zac +AN(Zauac)

the nonlinear term depends on Z (no sphere trick)

e lack of strong convergence of Z — cannot pass to the limit
timeslice-wise
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Sketch of proof

e due to symmetry of Rar, uy - Ra(ug, uy)ty =0
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Sketch of proof

due to symmetry of R, uy - Ry (g, uz)uy =0

for ug € WH>°(I, N, there exists a unique global regular solution
to the 1-harmonic flow independently of A/

e approximate with regular solutions

completely local estimate |u,(t, )] g < \uo z|g gives a good uniform

bound and allows to calculate Iu T Tuo, || outside of Jy,
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Sketch of proof

e due to symmetry of Rar, uy - Ra(ug, uy)ty =0

o for ug € WH>(I, N), there exists a unique global regular solution
to the 1-harmonic flow independently of A/

e approximate with regular solutions
e completely local estimate |u,(t, )]g < \uo z|g gives a good uniform

bound and allows to calculate Iu T Tuo, || outside of Jy,

e calculate ﬁﬁ by chain rule
xT

26 0f 30
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Sketch of proof (jump part)

e Fermi coordinates in a neighborhood of the geodesic along the
jump: on the geodesic g;; = d;5, gijr =0
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e Fermi coordinates in a neighborhood of the geodesic along the
jump: on the geodesic g;; = d;5, gijr =0
e in coordinates
~i

U =7 + Ty (w) & b

270 30
EEEEE————————————————————————



Sketch of proof (jump part)

e Fermi coordinates in a neighborhood of the geodesic along the
jump: on the geodesic g;; = d;5, gijr =0
e in coordinates
~i

U =7 + Ty (w) & b

e take ¢ > 0 — cutoff centered around the jump:
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Sketch of proof (jump part)

¢ slice-wise estimate

b
dist (u(t, 2), Yu(o)u(es) < C / a2, )|

for x €]a, b], t > 0, where vy q) (1,5 IS the minimal geodesic
joining u(t, a) and u(t,b)
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Sketch of proof (jump part)

¢ slice-wise estimate
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for x €]a, b], t > 0, where vy q) (1,5 IS the minimal geodesic
joining u(t, a) and u(t,b)

e maximum principle in a convex ball

e relaxation estimate

imint [ Julle > [ fuclye
I I

for the approximating sequence (u*) c W1°°(I, N') converging to
u weakly in BV (I, N)
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Other boundary conditions

e can be transferred to periodic or Dirichlet b. c.
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 counterexample by Giga-Kuroda, 2015 for N = S?
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Other boundary conditions

can be transferred to periodic or Dirichlet b. c.

no finite stopping time for Dirichlet

counterexample by Giga-Kuroda, 2015 for N = S?

easy counterexample for ' = R?
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Thank you for your attention!
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